Морозостойкость. Как определяется морозостойкость различных строительных материалов (бетона, щебня)? От чего зависит? Конструкторское бюро Глеба Гринфельда Морозостойкость и определяющие ее факторы

Порядок работ Библиотека Цены Контакты Под Морозостойкостью понимают способность материала в насыщенном водой состоянии и при многократном действии знакопеременных температур сохранять основные физико-механические свойства в заданных границах. Морозостойкость строительных материалов в значительной мере связана с их плотностью, пористостью и водостойкостью. Стеновые, кровельные и другие материалы в конструкциях и отделке зданий и сооружений, подвергаемые в эксплуатационных условиях насыщению водой и замораживанию, испытывают значительное (до 200 МПа) гидростатическое давление увеличивающейся в объеме при замерзании в порах материала воды. Наибольшее расширение ее объема (примерно на 9%) происходит при температуре - 4°С. И хотя дальнейшее понижение температуры не вызывает увеличения объема образовавшегося льда, испытания материалов на морозостойкость проводят при значительно более низ-ких температурах (- 15°С и ниже), так как в микропорах вода замерзает обычно при - 10°С.

У пористых материалов наземных строительных конструкций в атмосферных условиях вода заполняет лишь часть общего объема пор. При замораживании вода отжимается в свободные поры, и этим, в частности, обусловливается способность пористых материалов противостоять разрушающему действию много-кратного замораживания и оттаивания находящейся в их порах воды. Если бы вода заполнила весь объем пор. разрушение материала наступило бы при первом же замораживании. Однако в зависимости от эксплуатационных условий при сорбции водяных паров из влажного воздуха обычно заполняются лишь микропоры материала (макропоры остаются резервом для миграции воды при замерзании), а при контакте с водой, наоборот, заполняются макропоры (микропоры являются резервными).

Пористые материалы, как правило, являются достаточно морозостойкими, если при насыщении вода заполняет не более 85% объема пор. Очевидно, что наибольшей морозостойкостью обладают плотные материалы и материалы с закрытой структурой пор и пустот.

Количественно морозостойкость характеризуют числом циклов попеременного замораживания и оттаивания, которое может выдержать насыщенный водой образец; при этом допускается снижение прочности на сжатие не более чем на 25% и потеря по массе не более чем на 5%. Важной физической характеристикой пористых строительных материалов и изделий различною назначения является проницаемость свойства материала пропускать сквозь себя газы или жидкости. Проницаемость в общем виде выражается количеством флюида (газа, жидкости), переходящего в единицу времени сквозь единицу поверхности образца материала определенной толщины при заданном равномерном перепаде давления. Проницаемость строительных материалов изменяется в широких пределах; она возрастает с увеличением площади проницаемой поверхности, перепада давления, пористости, количества и размера пор, удельного количества сквозных пор (при неизменной общей пористости), с уменьшением толщины образца материала и вязкости флюида.

Способ определения морозостойкости строительных материалов относится к области испытаний строительных изделий, в частности кирпича, камней силикатных и керамических. Способ определения морозостойкости строительных материалов включает насыщение образцов в воде или растворе хлористого натрия, поверхностное цикличное замораживание и оттаивание образцов и визуальную оценку морозостойкости, при этом замораживание осуществляют в течение 5-10 мин, а оттаивание 3-5 мин 0,1-0,2 части испытуемой поверхности, смену режимов замерзания и оттаивания ведут со скоростью 30-40 град/мин, а образцы погружают в воду и раствор хлористого натрия на 90-95% от их объема. Изобретение обеспечивает сокращение длительности испытаний, снижение трудоемкости, повышение достоверности результатов испытаний.

Изобретение относится к области испытания строительных материалов, в частности к определению их морозостойкости. Известен способ определения морозостойкости строительных материалов, включающий насыщение образцов в воде или растворе хлористого натрия, замораживание образцов в воздушной среде при температуре минус 20 o C в течение 2 - 4 ч и оттаивание образцов в водной среде или растворе хлористого натрия при температуре 20 o C в течение 1,5 - 2 ч, регистрацию числа циклов замораживания - оттаивания до достижения 25%-ной потери прочности образцов или 5%-ной потери массы или до появления внешних признаков разрушения, по которым судят о морозостойкости строительных материалов (1). Недостатком способа является значительная трудоемкость и продолжительность испытания и необходимость применения сложного и громоздкого оборудования. Известен способ ускоренного определения морозостойкости строительных материалов путем насыщения водой образцов с вмонтированным в него стальным стержнем, замораживания и оттаивания и фиксации резкого возрастания начального электрического потенциала стального стержня, по которому и судят о морозостойкости материала (2). Известен способ определения морозостойкости образцов строительного материала по соотношению структурной и прочностной характеристик, отличающийся тем, что за структурную характеристику принимают капиллярную и контракционную пористости, а за прочностную - работу разрушения образцов (3). Недостатками известных способов (2, 3) является косвенность методов определения морозостойкости и вследствие этого невысокая точность результатов. Кроме того недостатками способов (1, 2, 3) является то, что определения морозостойкости в условиях прямого объемного замораживания не соответствует фактическим эксплуатационным условиям строительного материала, подвергающегося попеременному воздействию отрицательных и положительных температур только с одной стороны. Поэтому результаты испытания строительного материала приводят к большому разбросу значений морозостойкости материала. Известен способ определения морозостойкости строительных материалов путем одностороннего замораживания в морозильной камере в специальном контейнере, обеспечивающем отвод тепла с одной стороны испытуемых образцов, оттаивания в ванне с водой, определения структурной и прочностной характеристики образцов с последующим расчетом морозостойкости по формуле (4). Известен способ определения морозостойкости строительных материалов, включающий насыщение образца водой, путем циклического ввода под давлением порций воды, рассчитанных по эмпирической формуле (5). Недостатками известных способов (4, 5) является недостаточно высокая достоверность результатов испытания из-за применения в них расчетных формул с использованием эмпирических коэффициентов. Наиболее близким к предлагаемому является способ определения морозостойкости, включающий одностороннее замораживание кладки из кирпича или камней при температуре воздуха - 15 - 20 o C в течение 8 ч, оттаивание замороженной стороны кладки дождеванием при температуре воды 15 - 20 o C в течение 8 ч, регистрацию числа циклов замораживания и оттаивания до появления на поверхности кладки видимых признаков разрушения (шелушение, расслоение, растрескивание, выкрашивание), либо по потере массы и прочности, по которым судят о морозостойкости образцов строительных материалов (6). Недостатками известного способа является его высокая трудоемкость, стоимость и большая продолжительность испытания, что не позволяет осуществлять оперативный контроль выпускаемой продукции, значительные энергетические затраты на создание условий замораживания. Технический результат предлагаемого изобретения - сокращение длительности испытания, снижение трудоемкости, повышение достоверности результатов испытаний. Технический результат достигается тем, что в известном техническом решении, включающем предварительное насыщение образцов в воде или растворе хлористого натрия, одностороннее цикличное замораживание и оттаивание образцов, и визуальную оценку морозостойкости, ведут направленное, точечное замораживание в течение 5 - 10 мин и оттаивание в течение 3 - 5 мин 10 - 20% открытой поверхности испытываемых образцов, причем смену режимов замораживания и оттаивания осуществляют со скоростью 30 - 40 o в минуту, а образцы погружают в воду или раствор хлористого натрия на 90 - 95% их объема. Способ осуществляли следующим образом. Образцы, предназначенные для испытания на морозостойкость, предварительно насыщали в воде или растворе хлористого натрия. Затем устанавливали три образца Т-образно в емкость лицевой поверхностью вверх. После этого заливали в емкость воду или раствор хлористого натрия до погружения образцов на 90 - 95% их объема. Потом направленным потоком холодного воздуха при температуре минус 15 - 20 o C обрабатывали стык трех образцов, т.е. 10 - 20% их поверхности в течение 5 - 10 мин. Затем со скоростью 30 - 40 o C в мин переходили на режим нагревания и обрабатывали тот же стык теплым потоком воздуха с температурой 15 - 20 o C в течение 3 - 5 мин и регистрировали число циклов замораживания и оттаивания до появления видимых признаков разрушения (расслоения, растрескивания, выкрашивания, шелушения), по которым судили о морозостойкости строительных материалов. Использование в предлагаемом техническом решении приема точечного, направленного замораживания в течение 5 - 10 мин и оттаивания в течение 3 - 5 мин 10 -20% открытой поверхности испытываемых образцов позволяет создать в короткое время условия протекания процессов близких к фактическим при эксплуатации. За счет резкого (30 - 40 o C в мин) изменения режимов замораживания и оттаивания создается напряженное состояние в порах материала, обусловливающие деструктивные процессы, а именно разрыхление структуры, интенсификации микротрещинообразования и соответственно увеличение проницаемости. Погружение образцов в воду или раствор хлористого натрия на 90 - 95% от объема образца обеспечивает условия постоянной миграции влаги к открытой лицевой поверхности испытываемого образца через капилляры и микротрещины. Все эти приемы позволяют проводить скоростное определение морозостойкости, близкое к фактическому. Незначительные энергетические затраты, низкая трудоемкость, доступность и достоверность результатов позволяют осуществлять текущий контроль выпускаемой продукции и своевременно выявлять нарушения технологического процесса. Источники информации 1. ГОСТ 10090.1-95, ГОСТ 10090.2-95 "Бетоны. Методы определения морозостойкости. 2. А.С. СССР N 482676 М. кл. C 01 N 33/38, 1975 г. 3. А.С. СССР N 435621 М. кл. C 01 N 25/02, 1975 г. 4. А.С. СССР N 828849 М. кл. C 01 N 33/38, 1982 г. 5. А.С. СССР N 1255921 М. кл. C 01 N 33/38, 1986 г. 6. ГОСТ 7025-91 Кирпич и камни керамические и силикатные. Методы определения и водопоглощения, плотности и контроля морозостойкости.

Формула изобретения

Способ определения морозостойкости строительных материалов, включающий насыщение образцов в воде или растворе хлористого натрия, цикличное замораживание и оттаивание открытой поверхности образцов и визуальную оценку морозостойкости, отличающийся тем, что замораживают и оттаивают 10 - 20% поверхности испытуемого образца в течение соответственно 5 - 10 мин и 3 - 5 мин, а смену режимов замораживания и оттаивания ведут со скоростью 30 - 40 град. /мин, при этом образцы погружают в воду или раствор хлористого натрия на 90 - 95% от их объема.

Морозостойкость и определяющие ее факторы.

Морозостойкость - это способность материала в водонасыщенном состояние противостоять многократному попеременному замораживанию и оттаиванию. Морозостойкость материала зависит от его структуры, степени заполнения пор водой, формы и размера пор, наличия защемленного воздуха в порах после водонасыщения, ионного состава, температуры и тд. Морозостойкость материала определяется числом циклов замораживания(-18(-\+2)) и оттаивания в воде (+20(-\+2)), после которых образци снижают прочность не более чем на 5% или массу не более чем на 5%/

Морозостойкость - свойство насыщенного водой материала выдерживать попеременное замораживание и оттаивание. Морозостойкость материала количественно оценивается маркой по морозостойкости. За марку материала по морозостойкости принимают наибольшее число циклов попеременного замораживания и оттаивания, которое выдерживают образцы материала без снижения прочности на сжатие более 15%; после испытания образцы не должны иметь видимых повреждений - трещин, выкрашивания (потеря массы не более 5%). От морозостойкости зависит долговечность строительных материалов в конструкциях, подвергающихся действию атмосферных факторов и воды.

Марка по морозостойкости устанавливается проектом с учетом вида конструкции, условий ее эксплуатации и климата. Климатические условия характеризуются среднемесячной температурой наиболее холодного месяца и числом циклов попеременного замораживания и оттаивания по данным многолетних метеорологических наблюдений.

Легкие бетоны, кирпич, керамические камни для наружных стен обычно имеют морозостойкость 15, 25, 35. однако бетон, применяемый в строительстве мостов и дорог, должен иметь марку 50, 100 и 200, а гидротехнический бетон - до 500.

Воздействие на бетон попеременного замораживания и оттаивания подобно многократному воздействию повторной растягивающей нагрузки, вызывающей усталость материала.

Испытание морозостойкости материала в лаборатории проводят на образцах установленной формы и размеров (бетонные кубы, кирпич и т.п.). перед испытанием образцы насыщают водой. После этого их замораживают в холодильной камере от -15 до -20С, чтобы вода замерзла в тонких порах. Извлеченные из холодильной камеры образцы оттаивают в воде с температурой 15-20С, которая обеспечивает водонасыщенное состояние образцов.

Для оценки морозостойкости материала применяют физические методы контроля и прежде всего импульсный ультразвуковой метод. С его помощью можно проследить изменение прочности или модуля упругости бетона в процессе циклического замораживания и определить марку бетона по морозостойкости в циклах замораживания и оттаивания, число которых соответствует допустимому снижению прочности или модуля упругости.

Морозостойкость - способность насыщенного водой материа­ла сохранять физико-механические свойства при попеременном замораживании и оттаивании.

Морозостойкость строительного материала характеризуется маркой по морозостойкости: числом циклов попеременного замора­живания и оттаивания образцов бетона, после которых сохраняются первоначальные физико-механические свойства в нормируемых пределах: как правило, потеря массы и (или) прочности.

Щебень Полученные пробы промывают и высушивают до постоянной массы. Затем каждую пробу данной фракции равномерно насыпают в металлический сосуд и заливают водой, имеющей температуру 20±5 °С. Через 48 ч сливают воду из сосуда, помещают щебень в морозильную камеру и доводят температуру в камере до (-18±2) °С. Продолжительность одного цикла замораживания при такой темпе­ратуре составляет 4 ч. После этого сосуд с щебнем вынимают из морозильной камеры и помещают в ванну с водой с температурой 20±5 °С и выдерживают при этой температуре до полного оттаива­ния щебня, но не менее 2 ч. Далее циклы испытания повторяют.

После 15, 25 и каждых 25 циклов попеременного заморажива­ния и оттаивания пробу щебня высушивают до постоянной массы, просеивают через контрольное сито, на котором она полностью ос­тавалась перед испытанием, взвешивают остаток на сите и вычис­ляют потерю массы Am, %, с точностью до 0,1% по формуле Морозостойкость бетона определяется на образцах кубической формы размером 100x100x100 мм или 150x150x150 мм при дости­жении им нормативной прочности на сжатие (как правило, после 28 суток твердения).

Контрольные и основные образцы перед заморажива­нием насыщают водой температурой 18±2 °С.

Для насыщения образцы погружают в жидкость на 1/3 их высо­ты на 24 ч, затем уровень жидкости повышают до 2/3 высоты об­разца и выдерживают в таком состоянии еще 24 ч, после чего об­разцы полностью погружают в жидкость на 48 ч таким образом, что­бы уровень жидкости был выше верхней грани образцов не менее чем на 20 мм.

Контрольные образцы через 2...4 ч после извлечения из ванны испытывают на сжатие.

Основные образцы загружают в морозильную камеру при тем­пературе минус 18+2 °С и выдерживают при этой температуре не менее 2,5 ч для образцов с ребром 100 мм и не менее 3,5 ч для об­разцов с ребром 150 мм. Образцы после замораживания оттаивают в ванне с водой при температуре 18±2 °С в течение 2,0±0,5 ч и 3,0+0,5 ч соответственно в зависимости от размера образцов. В су­тки должно проводиться не менее 1 цикла.

Количество циклов попеременного замораживания и оттаива­ния, после которых должно проводиться испытание на сжатие, ус­танавливается в зависимости от ожидаемой марки бетона по моро­зостойкости.

Марку бетона по морозостойкости принимают за соответст­вующую требуемой, если среднее значение прочности на сжатие основных образцов после установленного для данной марки коли­чества циклов попеременного замораживания и оттаивания умень­шилось не более чем на 5 % по сравнению со средней прочностью на сжатие контрольных образцов.

Для цементных бетонов установлены следующие марки по мо­розостойкости: F25, F35, F50, F75, F100, F150, F200, F300, F400, F500, F600, F800. F1000. Зависит от физических свойств материала.

Назовите свойства, связанные с отношением материала к нагреванию. Единицы измерения. Численные значения. Примеры для различных материалов.

Теплопроводность(ккал/м*ч*градус,вода0,51),термостойкость,теплоёмкость(кДЖ/кг*градус вода=1), огнеупорность(градусы), огнестойкость(градусы). Теплопроводность сталь 50 . теплоёмкость сталь – 0,48

Теплопроводность. От чего зависит? В каких единицах измеряется. Численные значения теплопроводности для различных материалов. Для каких конструкций учитывается?

Теплопроводность (ккал/м*ч*градус) – это способность материала передавать через свою толщу тепло. Это явление возникает когда на противоположных поверхностях материала существует разность температур, например, на внешней и внутренней поверхностях стен здания. Зависит от строения и вещества материала, величины и характера пористости, влажности и др. Воздух – 0,02. Вода-0,51.Кирпич-0,75.гранит-2,5.Сталь-50. Учитывается для стен помещений, жилых строений и тд.

Объясните различие между огнестойкостью, огнеупорностью и теплостойкостью. Примеры.

Огнестойкость-способность материала не гореть. Огнеупорность-способность материала выдерживать длительное время действие высоких температур без деформации(без плавления). Термостойкость – способность материала сохранять эксплуатационные свойства при повышенных температурах: не деформируясь сохранять прочность.

Назовите механические и деформативные свойства материалов. Методы их определения.

Механические свойства отражают способность материала противостоять механическим воздействиям (нагрузкам) при эксплуатации. Нагрузки могут быть постоянными и временными. Св-ва: прочность твёрдость, стойкость при ударе, стойкость при истирании, износостойкость,упругопластические и деформативные св-ва.

Релаксация - свойство материала самопроизвольно снижать напряжения при условии, что начальная ее личина деформации зафиксирована жесткими связями и остается неизменной. При релаксации напряжений может измениться характер начальной деформации, например из упругой постепенно перейти в необратимую "(пластическую), при этом изменения размеров не происходит. Такое исчезновение напряжений возможно за счет межмолекулярных перемещений и переориентации внутримолекулярной структуры. Время, в течение которого первоначальная величина напряжения снижается в е -2,718 раза (е - основание натуральных логарифмов), называют периодом релаксации. Период релаксации меняется от 1(Н0 с у материалов жидкой консистенции до 2-Ю10 с (десятки лет и более) - у твердых материалов (чем меньше, тем более деформативен материал).

Упругость - свойство материала принимать после снятия нагрузки первоначальную форму и размеры. Количественно упругость характеризуют пределом упругости, который условно приравнивают напряжению, при котором материал начинает получать остаточные деформации очень малой величины, устанавливаемой в технических условиях для данного материала.Вышеуказанные характеристики прочности в значительной степени являются условными: 1) они не учитывают фактора времени, т. е. продолжительности действия напряжений, что искажает величину истинной прочности материала; 2) размеры, форма, характер поверхности образцов материала, скорость нагружения, прикалывания боры и другие исходные данные в принятых методах условны. Предел прочности одного и того же материала может иметь различную величину в зависимости от размера образца, его формы, скорости приложения нагрузки и конструкции прибора, на котором испытывались образцы.

Твердость - свойство материала сопротивляться проникновению в него другого более твердого материала. Для определения твердости материалов в зависимости от их вида и назначения существует ряд методов. Твердость каменных материалов однородного строения определяют по шкале Мооса, которая составлена из 10 минералов с условным показателем твердости от 1 до 10 (самый мягкий тальк- 1, самый твердый алмаз- 10). Показатель твердости испытуемого материала находится между показателями твердости двух соседних минералов, из которых один царапает испытываемый материал, а другой оставляет черту на образце материала. Твердость металла, бетона, пластмасс определяют вдавливанием в испытуемый образец под определенной нагрузкой и в течение определенного времени стандартного стального шарика. За характеристику твердости в этом случае принимают отношение нагрузки к площади отпечатка. Показатели твердости, полученные разными способами, нельзя сравнивать друг с другом. Высокая прочность материала не всегда говорит о его твердости (например, древесина по прочности при сжатии равнозначна бетону, а ее твердость значительно меньше, чем у бетона).

Истираемость - свойство материала сопротивляться истирающим воздействиям. Одновременное воздействие истирания и удара характеризует износостойкость материала. Оба эти свойства определяют различными условными методами: истираемость - на специальных кругах истирания, а износ - с помощью вращающихся барабанов, куда вместе с пробой материала часто загружают определенное количество металлических шаров, усиливающих эффект измельчения. За характеристику истираемости принимают потерю массы или объема материала, отнесенных к 1 см2 площади истирания, а за характеристику износа - относительную потерю массы образца в процентах от пробы материала.

Цель работы : определить марку по морозостойкости цементного бетона. Познакомиться с методами ее определения.

I . Теоретическая часть:

Морозостойкость – это свойство насыщенного водой или раствором соли материала выдерживать многократное попеременное замораживание и оттаивание без значительных признаков разрушения и снижения прочности. Количественная характеристика морозостойкости – марка по морозостойкости (F ), которая показывает число циклов попеременного замораживания и оттаивания насыщенного в жидкой среде материала, при которых потери прочности и массы не превышают указанных в ГОСТе и СНиПах значений.

;

- потеря прочности и массы, насыщенного в жидкой среде образца, после i циклов замораживания и оттаивания, %;

- предел прочности при сжатии(в МПа) и масса (в г) образца после n циклов замораживания и оттаивания образца;

- предел прочности при сжатии (в МПа) и масса образца (в г), насыщенного в жидкой среде, до замораживания.

Для каждого материала устанавливают марки по морозостойкости. Марка обозначается буквой F , после которой указывается минимальное число циклов, которое должен выдержать материал (например, F100).

Марка по морозостойкости (F ) для тяжелого цементного бетона – это количество циклов попеременного замораживания и оттаивания насыщенного водой стандартного образца, при которых потеря прочности не превышает 5%, а для бетона дорожных и аэродромных покрытий, кроме того, потеря массы не более чем на 3% (ГОСТ ……).

Стандарт устанавливает три метода контроля морозостойкости:

I – для бетонов, кроме дорожных и аэродромных;

II – для дорожных и аэродромных бетонов и ускоренный для других бетонов;

III – ускоренный для всех видов бетона.

Методы контроля морозостойкости.

Размеры образцов, см

Температурный режим, время и среда

Число образцов

насыщения

замораживания

оттаивания

основных

(после замора-живания)

контрольных

(насыщенных водой)

t = 18+ 2 0 C

96 ч

t = -18+ 2 0 С

=2,5+ 0,5 ч

t = 18+ 2 0 C

=2+ 0,5 ч

5% р-р

t=18+ 2 0 С

=96 ч

t = -18+ 2 0 С

=2,5+ 0,5 ч

5% р-р

t=18+ 2 0 С

=2,5+ 0,5 ч

5% раствор

t=18+ 2 0 С

=96 ч

Понижение до -50-55 0 С-2,5 ч

выдержка при -50-55 0 С– 2,5 ч

подъем до -10 0 С – 2,5 ч

t=18+ 2 0 С

=2,5+ 0,5 ч

Образцы насыщают в жидкой среде по следующей схеме:

На 1/3 высоты - 24 часа, на 2/3 высоты – на 24 часа, целиком – на 48 часов.

Соотношение между марками бетона по морозостойкости, установленными различными методами, приведены в ГОСТ 10060-95.

II . Материалы и оборудование:

Образцы-кубы тяжелого цементного бетона;

Ванны для насыщения образцов в жидкой среде;

Торговые весы с разновесами;

Гидравлический пресс;

Морозильная камера;

Ванна для размораживания.

III . Методика проведения работы.

Контрольные образцы через 2-4 ч после извлечения из ванны испытать на сжатие.

Основные образцы загрузить в морозильную камеру в контейнере или установить на сетчатый стеллаж камеры таким образом, чтобы расстояние между образцами, стенками контейнеров и вышележащими стеллажами было не менее 50 мм. Началом замораживания считать момент установления в камере требуемой температуры;

Число циклов переменного замораживания и оттаивания, после которых должно проводиться испытание прочности на сжатие образцов бетона после промежуточных и итоговых испытаний, установить в соответствии с таблицей ГОСТ 10060.0. В каждом возрасте испытать по шесть основных образцов.

Образцы испытать по режиму, указанному в таблице.

Образцы после замораживания оттаять в ванне с водой при температуре (18±2)°С. При этом образцы должны быть погружены в воду таким образом, чтобы над верхней гранью был слой воды не менее 50 мм.

Исходные расчетные данные выдаются каждому студенту преподавателем на специальных карточках для бетона определенной марки.

IV . Лабораторный журнал.

Кол-во циклов замор.-оттаив.

R сж ,

Потеря прочности

Масса образца

,

Потеря массы

Коэф. Морозостойкости

,

,

Полученные расчетные данные обработать в виде графиков:

и

По построенным кривым определить морозостойкость бетона – допустимое число циклов замораживания и оттаивания, при которых потеря прочности равна 5% и потеря массы 3%. Установить марку бетона по морозостойкости – F , в соответствии с указанными марками в ГОСТе, как ближайшее количество циклов, найденных по графикам.

Марка по морозостойкости для дорожного и аэродромного бетона устанавливается как ближайшее круглое число циклов, менее или равное опытному, при котором:

и

для всех остальных видов бетона учитывается только потеря прочности.

Для образцов, не имеющих видимых следов разрушения после заданного числа циклов замораживания и оттаивания, вычисляют коэффициент морозостойкости:

Где
и
- пределы прочности при сжатии образцов материала, соответственно после испытания на морозостойкость и водонасыщенных образцов до замораживания, в МПа.

Приложение 1

Таблица 1

Физико-механические свойства некоторых материалов

Наименование материала

Прочность при сжатии,

Истинная плотность,

кг/м 3

Средняя плотность, кг/м 3

Тепло-проводность,

Вт/(м .0 С)

Известняк плотный

Известняк - ракушечник

Кирпич керамический

Кирпич силикатный

Бетон тяжелый

Бетон легкий

Древесина сосны

Сталь Ст3(при растяжении)

Пластмассы

Таблица 2

Пористость и водопоглощение керамического кирпича

Литература.

    И.И. Леонович, В.А. Стрижевский, К.Ф. Шумчик. Испытание дорожно-строительных материалов.: Минск, Вышэйшая школа, 1991. – 235 с.

    К.Н. Попов, М.Б. Каддо, О.В. Кульков. Оценка качества строительных материалов.: Москва, АСВ, 2001. – 240 с.

    И.А. Рыбьев. Строительное материаловедение. М.: Высшая школа, 2003.

    Микульский,В.Г. Строительные материалы (материаловедение и технология): Учебное пособие.- М: ИАСВ, 2002.- 536с.