Что такое площадь квадрата? Вычисляем площадь квадрата: по стороне, диагонале, периметру Площадь двух квадратов.

Площадью квадрата называется часть плоскости, которая ограничивается сторонами этого квадрата.

Квадрат является частным случаем прямоугольника, то его площадь можно найти как произведение одной его стороны на другую, а так как все стороны квадрата равны, то его площадь будет равна квадрату длины его стороны:

Также площадь квадрата равна половине квадрата длины его диагонали (d), то есть:

Диаметр окружности, описанной около квадрата совпадает с диагональю этого квадрата, тогда его площадь можно найти и через длину диаметра (D) описанной окружности:

Так как диаметр окружности в 2 раза больше, чем ее радиус, то площадь квадрата можно найти и через радиус описанной окружности:

S = (2 * R)²/2 = (4 * R²)/2 = 2 * R².

Квадрат - это правильный четырёхугольник, то есть четырёхугольник, у которого все стороны равны. Площадь квадрата можно найти тремя способами:

  • Через сторону квадрата.
  • Через периметр квадрата.
  • Через диагональ квадрата.

Рассмотрим каждый из методов нахождения площади квадрата.

Вычисление площади квадрата через его сторону

Пусть a - сторона квадрата. Так как у квадрата все стороны равны, то каждая сторона квадрата будет равна a. В таком случае площадь квадрата S можно вычислить по формуле:
S = a * a = a 2 . Например, пусть сторона квадрата равна 5, тогда его площадь будет такой:
S = 5 2 = 25.

Вычисление площади квадрата через его периметр

Пусть P - это периметр квадрата. Периметр - это сумма всех сторон, то P = a + a + a + a = 4 * a. Так как S = a 2 (по раннее записанной формуле), то из периметра можно выразить a:
a = P / 4. Тогда S = P 2 / 16. Например, известно, что периметр квадрата равен 20, тогда, можно найти его площадь: S = 20 2 / 16 = 400 / 16 = 25.

Вычисление площади квадрата через его диагональ

Диагональ квадрата делит его на два равных прямоугольных треугольника. Рассмотрим один из прямоугольных треугольников. Его катеты равны a и a (две стороны квадрата), а гипотенуза равна диагонали квадрата (d). По теореме Пифагора вычислим гипотенузу:
d 2 = a 2 + a 2 ;
d 2 = 2 * a 2 ;
d = a * √2.
В таком случае площадь квадрата запишется так: S = d 2 /2. Например, дана диагональ квадрата: d = √18, значит площадь квадрата будет такой: S = (√18) 2 / 2 = 18 / 2 = 9.
Все эти формулы удобны для вычисления площади квадрата.

Площадь квадрата – базовое понятие, благодаря которому можно без проблем рассчитать расход материалов для ремонта, высчитать верные габариты мебели при замерах помещения, понять, сколько нужно удобрения и семян для высадки важных культур на огромном поле.

Приведенными формулами площади квадрата пользуются и строители, и мебельные производители, и представители сельского хозяйства.

Что такое квадрат?

Квадрат – правильный прямоугольник с равными сторонами. Каждый угол фигуры равен 90⁰. Квадрат относится к простым геометрическим фигурам, расположенным на плоскости. Найти площадь квадрата можно несколькими способами вычислений: по диагонали, по стороне, по периметру.

Формулы площади, примеры расчетов

Площадь простой фигуры – положительная величина, обладающая перечисленными ниже свойствами:

  • Равные геометрические фигуры обладают равными площадями.
  • В случае, если простая фигура разделена на несколько частей, ее общая площадь будет всегда равна сумме площадей всех элементов.
  • Площадь квадрата всегда равна единице, если его сторона соответствует единице измерения.

По стороне

В геометрии площадь всегда обозначается как S, а маленькие латинские буквы (например, а и b) – это стороны простой фигуры.

В основе вычисления площади любого прямоугольника по стороне лежит простая формула: S = ab , но в случае с квадратом формулу преобразовывают в S = а² , так как две стороны одинаковы по длине.

Отсюда следует утверждение, что площадь квадрата равна квадрату его стороны.

Пример 1: Дан квадрат, сторона которого равна 5 см. Чему равна площадь?
Решение: S = 5² = 25 см

Пример 2: Сторона фигуры 3 см. Найдите площадь.
Решение: S = 3² = 9 см

По диагонали

Еще один вариант найти площадь – это произвести вычисления относительно диагонали фигуры (d). Правда, для этого нужно сперва найти длину самой диагонали. Известно, что диагональ делит квадрат на два равнобедренных треугольника. А значит, вычисления можно провести по известной теореме Пифагора, где катетами будут выступать стороны квадрата, а гипотенузой – собственно диагональ.

Расчет площади по диагонали производится по принципу: площадь квадрата равна квадрату длины диагонали (вычисленной по теореме Пифагора) и поделенному на два.

Пример: Дан квадрат, диагональ которого составляет 10 см. Как вычислить площадь?
Решение: Согласно формуле, приведенной выше, вычисления производятся так: S = 10²/2 = 100/2 = 50 cм²

По периметру

Периметр – сумма всех длин сторон квадрата. Обозначается периметр латинской буквой Р. Беря во внимание определение квадрата, получаем универсальную формулу расчета периметра для равностороннего четырехугольника: Р = 4а . То есть, периметр квадрата равен длине стороны, помноженной на четыре.

Вычисления площади квадрата относительно суммы всех сторон необходимо в том случае, если в задаче задано только значение периметра. Зная формулу вычисления периметра, очень легко найти площадь.

Если Р = 4а , то а = Р/4 . Далее уже нужно использовать формулу расчета площади по стороне.

Пример: Пусть будет дан квадрат с периметром 100 мм. Какова площадь?
Решение: Сторона квадрата будет равна 100/4 = 25 мм. Ну, а площадь квадрата дальше вычисляется по формуле, где площадь квадрата равна квадрату сторон. То есть, S = 25² = 625 мм²

Площадь квадрата вписанного в окружность

Этот вариант используется как следствие формулы, полученной ранее (расчет по диагонали). Согласно математическим данным, диаметр круга как раз и будет равен диагонали квадрата. Поэтому, чтобы оперативно рассчитать площадь равностороннего четырехугольника, достаточно будет знать диаметр круга. А далее используется уже известная формула: S = d²/2

Типовая задача: например, дана окружность с диагональю 8 см и в нее вписан квадрат. Какая площадь четырехугольника?
Правильное решение: S = 8²/2 = 64/2 = 32 cм²

Видео урок

Формула площади необходима для определения площадь фигуры, которая является вещественнозначной функцией, определённой на некотором классе фигур евклидовой плоскости и удовлетворяющая 4м условиям:

  1. Положительность — Площадь не может быть меньше нуля;
  2. Нормировка — квадрат со стороной единица имеет площадь 1;
  3. Конгруэнтность — конгруэнтные фигуры имеют равную площадь;
  4. Аддитивность — площадь объединения 2х фигур без общих внутренних точек равна сумме площадей этих фигур.
Формулы площади геометрических фигур.
Геометрическая фигура Формула Чертеж

Результат сложения расстояний между серединами противоположных сторон выпуклого четырехугольника будут равна его полупериметру.

Сектор круга.

Площадь сектора круга равна произведению его дуги на половину радиуса.

Сегмент круга.

Чтобы получить площадь сегмента ASB, достаточно из площади сектора AOB вычесть площадь треугольника AOB.

S = 1 / 2 R(s - AС)

Площадь эллипса равна произведению длин большой и малой полуосей эллипса на число пи.

Эллипс .

Еще один вариант как вычислить площадь эллипса - через два его радиуса.

Треугольник. Через основание и высоту.

Формула площади круга через его радиус и диаметр.

Квадрат . Через его сторону.

Площадь квадрата равна квадрату длины его стороны.

Квадрат. Через его диагонали .

Площадь квадрата равна половине квадрата длины его диагонали.

Правильный многоугольник .

Для определения площади правильного многоугольника необходимо разбить его на равные треугольники, которые бы имели общую вершину в центре вписанной окружности.

S= r·p = 1/2 r·n·a

Нужно в вышеуказанную формулу подставить его стороны. Но они равны, получается, чтобы найти площадь правильного прямоугольника нужно возвести в квадрат его сторону. S = (a) во второй степени.

Теперь по формуле площади квадрата можно найти его сторону, зная численное значение площади. Для этого нужно решить уравнение второй степени: S=(a) во второй степени. Находится сторона «а» путем извлечения из под корня площади фигуры: а = корень квадратный из (S). Пример: нужно найти сторону квадрата, если его площадь составляет шестьдесят четыре квадратных сантиметров. Решение: если 64=(а) в кавдрате, то "а" равно корень из шестидесяти четырех. Получается восемь. Ответ: восемь квадратных сантиметров.

Если решение квадратного корня выходит за рамки таблицы квадратов и ответ не получается целым, спасет микрокалькулятор. Даже на самой простой машинке можно найти значение из под корня второй степени. Для этого наберите следующий набор кнопок: "число", которое выражает подкоренное выражение и "знак корня". Ответ на экране и будет подкоренным значением.

Куб представляет собой частный случай параллелепипеда, в котором каждая из граней образована правильным многоугольником - квадратом. Всего куб обладает шестью гранями. Вычислить площадь не представляет затруднений.

Инструкция

Теперь, зная площадь одной из грани квадрата, можно узнать площадь всей поверхности куба. Это можно осуществить, если модифицировать формулу, указанную выше:
S = 6*a²
Иначе говоря, зная, что таких квадратов (граней) у куба аж шесть штук, то площадь поверхности куба составляет одной из граней куба.

Для наглядности и удобства можно привести пример:
Допустим, дан куб, у которого длина ребра равна 6 см, требуется найти площадь поверхности данного куба. Первоначально потребуется найти площадь грани:
S = 6*6 = 36 см²
Таким образом, узнав площадь грани, можно найти и всю площади поверхности куба:
S = 36*6 = 216 см²
Ответ: площадь поверхности куба с ребром, равным 6 см, составляет 216 см²

Обратите внимание

Куб является частным случаем не только параллелепипеда, но и призмы.
Параллелепипедом называется призма, у которого основанием является параллелограмм. Особенностью параллелепипеда является то, что 4 из 6 его граней - прямоугольники.

Призмой считается многогранник, в основании которого находятся равные многоугольники. Одной из главных особенностей призмы можно назвать то, что боковые грани ее является параллелограммами.

Помимо куба, существуют и иные виды многогранников: пирамиды, призмы, параллелепипеды и т.д., каждому из них соответствуют различные способы нахождения площадей их поверхностей.

Полезный совет

Если дан не куб, а иной правильный многогранник, то в любом случае, площадь его поверхности будет находиться аналогично. Это означает, что площадь поверхности правильного многогранника находится путем суммирования всех площадей его граней - правильных многоугольников.

Кубом называют объемную геометрическую фигуру с восемью ребрами, двенадцатью вершинами и шестью гранями. От параллелепипеда, имеющего такие же параметры, ее отличают обязательное равенство длин всех ребер и прямые углы в вершинах каждой грани. Простота этой фигуры делает несложным вычисление общей площади поверхности всех ее граней.

Инструкция

Если известна длина куба (a), то вы можете использовать наиболее распространенный из всех возможных вариантов формулы вычисления площади (S). По определению каждая грань этой фигуры имеет квадрата, а его площадь равна длине грани, возведенной во вторую степень. Так как всего таких граней у куба шесть, то это число надо увеличить именно во столько раз: S = 6*a².

Если длина ребра неизвестна, но дан объем (V) пространства, ограничиваемого сторонами куба, то площадь (S) тоже можно . Так как известная из условий величина для этой фигуры находится возведением длины ребра в третью степень, то длину стороны каждой грани можно определить, если извлечь кубический корень из этого параметра. Подставьте это выражение в равенство из предыдущего шага и вы получите такую формулу: S = 6*(³√V)².

Если известна длина диагонали куба (L), то через нее тоже можно выразить длину одной грани, а значит и рассчитать площадь поверхности гексаэдра. Диагональ находится умножением длины грани на квадратный корень из тройки - выразите из этой формулы размер одной стороны квадрата и подставьте полученное значение во все то же равенство из первого шага: S = 6*(L/√3)² = 2*L².

Если известен радиус описанной около куба сферы (R), то формулу вычисления площади поверхности можно вывести из полученного на предыдущем шагу выражения. Так как любая из диагоналей куба совпадает с диаметром такой сферы, а диаметр - это удвоенный радиус, то вам надо трансформировать формулу к такому виду: S = 2*(2*R)² = 8*R².

Еще проще получить формулу вычисления площади поверхности (S) гексаэдра, если известен радиус (r) не описанной, а вписанной в эту фигуру сферы. Ее диаметр (удвоенный радиус) равен длине ребра куба. Подставьте это значение в формулу из первого шага и получите такое равенство: S = 6*(2*r)² = 24*r².

Грань куба представляет собой квадрат, диагональ которого делит его на два равных прямоугольных треугольника, являясь их гипотенузой. Именно поэтому все используемые здесь формулы в той или иной степени основаны на применении теоремы Пифагора. В зависимости от имеющихся данных вы сможете найти площадь грани (квадрата) куба несколькими различными способами.

Квадрат – это правильный четырехугольник, в котором все углы и стороны равны между собой.

Довольно часто эту фигуру рассматривают, как частный случай или . Диагонали квадрата равны между собой и используются в формуле площади квадрата через диагональ.
Для расчета площади рассмотрим формулу площади квадрата через диагонали:

То есть площадь квадрата равна квадрату длины диагонали поделенному на два. Учитывая, что стороны фигуры равны, можно рассчитать длину диагонали из формулы площади прямоугольного треугольника или по теореме Пифагора.

Рассмотрим пример расчета площади квадрата через диагональ. Пусть дан квадрат с диагональю d = 3 см. Необходимо вычислить его площадь:

По этому примеру расчета площади квадрата через диагонали мы получили результат 4,5 .

Площадь квадрата через сторону

Найти площадь правильного четырехугольника можно и по его стороне. Формула площади квадрата очень проста:

Так как в предыдущем примере расчета площади квадрата мы рассчитали значение по диаметру, теперь попробуем найти длину стороны:
Подставим значение в выражение:
Длина стороны квадрата будет равна 2,1 cm.

Очень просто можно использовать формулу площади квадрата вписанного в окружность.

Диаметр описанной окружности будет равен диаметру квадрата. Так как квадрат считается правильным ромбом, можно использовать формулу расчета площади ромба. Она равна половине произведения его диагоналей. Диагонали квадрата равны, значит формула будет выглядеть так:
Рассмотрим пример расчета площади квадрата вписанного в окружность.

Дан квадрат, вписанный в окружность. Диагональ окружности равна d = 6 см. Найдите площадь квадрата.
Мы помним, что диагональ окружности равна диагонали квадрата. Подставляем значение в формулу расчета площади квадрата через его диагонали:

Площадь квадрата равна 18

Площадь квадрата через периметр

В некоторых задачах по условиям дается периметр квадрата и требуется расчет его площади. Формула площади квадрата через периметр выводится из значения периметра. Периметр – это сумма длин всех сторон фигуры. Т.к. в квадрате 4 равных стороны, то он будет равенОтсюда находим сторону фигуры Площадь квадрата по обычной формуле считается так: .
Рассмотрим пример расчета площади квадрата через периметр.